t-Copula Based Factor Model for Credit Risk Analysis

Meng-Jou Lu Cathy Yi-Hsuan Chen

Ladislaus von Bortkiewicz Chair of Statistics Humboldt–Universität zu Berlin C.A.S.E. – Center for Applied Statistics and Economics National Chiao Tung University Department of Finance Chung Hua University Ivb.wiwi.hu-berlin.de case.hu-berlin.de nctu.edu.tw

Systematic Risk

Figure 1: Credit Risk depends the state of economy.

Motivation

Figure 2: Annual Default Counts from 1995-2013.

Motivation

Figure 3: Annual average Loss Given Default rate: IG , SG and All , from 1995-2013.

Motivation

Objectives

(i) Credit Risk Modeling

- ▶ Factor loading conditional on hectic and quiet state.
- State-dependent recovery rate.

(ii) Model Comparison

Four models

Standard Technology

Default event modeling

- Latent variable is a linear combination of systematic and idiosyncratic shocks.
- Copula enables flexible and realistic default dependence structure.
 - Gaussian Copula
 - t Copula

Outline

- 1. Motivation \checkmark
- 2. Factor Copulae & Stochastic Recoveries
- 3. Methodology
- 4. Empirical Results
- 5. Conclusions

Factor Copulae & Stochastic Recoveries

- Factor copula model is a flexible measurement of portfolio credit risk: Krupskii and Joe (2013)
- t copulas generate a greater likelihood of a clustering of defaults for companies: Hull and White (2004)
- Correlation breakdown structure: Ang and Bekaert (2002), Anderson et al. (2004)
- Recovery rate varies with the market conditions: Amraoui et al. (2012)

Candidate Models-Gaussian Copula

- FC model One-factor Gaussian copula model with constant correlation structure and constant recoveries.
- RFL model Conditional factor loading and constant recoveries.
- RR model One-factor Gaussian copula and stochastic recoveries.
- RRFL model Conditional factor loading and stochastic recoveries.

Candidate Models-t copula

- □ TFC model One-factor t copula model with constant correlation structure and constant recoveries.
- TRFL model One-factor t copula model with conditional factor loading and constant recoveries.
- □ TRR model One-factor t copula and stochastic recoveries.
- TRRFL model One-factor t copula model with conditional factor loading and stochastic recoveries.

Copulae

⊡ For *n* dimensions distribution *F* with marginal distribution F_{X_1}, \dots, F_{X_n} , Copula function:

 $F(x_1,\cdots,x_n)=C\{F_{X_1}(x_1),\cdots,F_{X_n}(x_n)\}$

One factor copula model

• Assume that $U = (U_1, \ldots, U_d)$ is a random vector. A factor copula model can be expressed as following.

$$C(u_1,\ldots,u_d) = \int_{[0,1]} \prod_{j=1}^d F_{j|V}(u_j \mid v) dv$$
 (1)

C is a *d*-dimensional copula.
 C(u₁,..., u_d) is the joint cdf of the vector U.
 F_{1|V},..., F_{d|V} denote joint distribution conditional on V.

Gaussian-copula based one factor model(I)

$$\begin{array}{l} \hline \text{ Let } C_{j,v} \text{ be the bivariate Gaussian copula with correlation } \alpha_j. \\ \text{ Then } C_{j,v}(u_j,v) = \Phi_2\{\Phi^{-1}(u_j), \Phi^{-1}(v); \alpha_j\}, \text{ and} \\ F_{j|V}(u_j \mid v) = C_{j|V}(u_j \mid v) = \frac{\partial C_{j,v}(u_j,v)}{\partial v} \\ F_{j|V}(u_j \mid v) = \Phi\left[\frac{\{\Phi^{-1}(u_j) - \alpha_j \Phi^{-1}(v)\}}{\sqrt{1 - \alpha_j^2}}\right] \end{array}$$
(2)

 \boxdot Φ denotes the Gaussian cdf and Φ_2 is the bivariate normal cdf.

Gaussian-copula based one factor model(II)

$$\boxdot$$
 Let $u_j = \Phi(z_j)$ and $v = \Phi(w)$

$$C(u_1, \dots, u_d) = \int_0^1 \prod_{j=1}^d \left\{ \Phi\left[\frac{\Phi^{-1}(u_j) - \alpha_j \Phi^{-1}(v)}{\sqrt{1 - \alpha_j^2}} \right] \right\} dv$$
$$= \int_{-\infty}^\infty \prod_{j=1}^d \left\{ \Phi\left[\frac{z_j - \alpha_j w}{\sqrt{1 - \alpha_j^2}} \right] \right\} \psi(w) dw$$
(3)

$\boxdot~\psi$ denotes the Gaussian pdf.

⊡ Eq.3) comes from

$$Z_j = lpha_j W + \sqrt{1 - lpha_j^2} arepsilon_j \quad j = 1, \dots, d.$$

- \bigcirc W: systematic factor, ε_j : idiosyncratic factors.
- \boxdot W and ε_j are independent, and ε_j are uncorrelated among each other
- \Box Z_j : the proxies for firm asset and liquidation value.
- \odot Correlation coefficient between Z_1 and Z_2 is

$$\rho_{12} = \frac{\alpha_1 \alpha_2 \sigma^2}{\sqrt{\alpha_1^2 (\sigma^2 - 1) + 1} \sqrt{\alpha_2^2 (\sigma^2 - 1) + 1}}$$

t-copula based one factor model(I)

: Let
$$C_{j,v}(u_j, v) = \Phi_2(T_v^{-1}(u_j), \Phi^{-1}(v); \alpha_j)$$
 (McNeil and Frey, 2015), and

$$F_{j|V}(u_j \mid v) = \Phi\left[\frac{\{v_2^{-1}T_{\nu}^{-1}(u_j) - \alpha_j \Phi^{-1}(v)\}}{\sqrt{1 - \alpha_j^2}}\right]$$
(4)

• where $V_2 \sim Ig(\frac{\nu}{2}, \frac{\nu}{2})$ (*Ig* is inverse gamma distribution), and ν represents degrees of freedom.

t-copula based one factor model(II)

$$\boxdot$$
 Let $u_j = T_{
u}(z_j)$ and $v = \Phi(w)$

$$C(u_1, \dots, u_d) = \int_0^1 \prod_{j=1}^d \left\{ \Phi\left[\frac{v_2^{-1} T_\nu^{-1}(u_j) - \alpha_j \Phi^{-1}(v)}{\sqrt{1 - \alpha_j^2}} \right] \right\} dv$$
$$= \int_{-\infty}^\infty \prod_{j=1}^d \left\{ \Phi\left[\frac{v_2^{-1} z_j - \alpha_j w}{\sqrt{1 - \alpha_j^2}} \right] \right\} \psi(w) dw$$
(5)

 \odot Eq.(5) comes from

$$Z_j = V_2(lpha_j W + \sqrt{1-lpha_j^2} arepsilon_j) \quad j = 1, \dots, d.$$

- \square *W* is iid non-standard Gaussian distribution and ε_j are iid standard Gaussian.
- \odot Correlation coefficient between Z_1 and Z_2 is

$$\rho_{12} = \frac{\alpha_1 \alpha_2 \sigma^2}{V_2 \sqrt{\alpha_1^2 (\sigma^2 - 1) + 1} \sqrt{\alpha_2^2 (\sigma^2 - 1) + 1}}.$$

The default indicator

$$I \{ \tau_j \le t \} = I [Z_j \le F^{-1} \{ P_j(t) \}].$$

- \boxdot τ_j indicates the default time of each obligor.
- \Box $F^{-1}(\cdot)$ denotes the inverse cdf of any distribution.
- \square $P_j(t)$: hazard rate and marginal probability that obligor j defaults before t.
 - From Moody's report.
 - Extract from Credit spreads.
 - Extract from Credit default swap spreads.

Portfolio loss for each obligor

$$L = \sum_{j=1}^{N} G_{j} \mathsf{I} \{ \tau_{j} \leq t \} = \sum_{j=1}^{N} G_{j} \mathsf{I} [Z_{j} \leq F^{-1} \{ P_{j}(t) \}].$$

G_j is the loss given default (LGD) (*j*-th obligor's exposure = 1).

Conditional Default Model-General Form

 \boxdot Conditional factor copula model

$$Z_{j}|_{S=H} = \alpha_{j}^{H}W + \sqrt{1 - (\alpha_{j}^{H})^{2}\varepsilon_{j}}$$
$$Z_{j}|_{S=Q} = \alpha_{j}^{Q}W + \sqrt{1 - (\alpha_{j}^{Q})^{2}\varepsilon_{j}}$$

α^H, α^Q are conditional factor loading.
 Conditional default probability

$$P(\tau_j < t|\mathsf{S}) = F\left[\frac{F^{-1}\{P_j(t)\} - \alpha_j^S W}{\sqrt{1 - (\alpha_j^S)^2}}\right] = P_j(W|\mathsf{S}) \quad \mathsf{S} \in \{\mathsf{H},\mathsf{Q}\}$$

∴ with $P(S=H)=\omega$, and $P(S=Q)=1-\omega$ t Copula Based Factor Model for Credit Risk Analysis —

State-Dependent Recovery Rate

- □ The LGD on name j, $G_j(W)$ is related to common factor W and the marginal default probability P_j
- \Box Given fixed expected loss, $(1 R_j)P_j = (1 \bar{R}_j)\bar{P}_j$

$$G_{j}(W|S=H) = (1-\bar{R}_{j}) \frac{F\left[\{F^{-1}(\bar{P}_{j}) - \alpha_{j}^{H}W\}/\sqrt{1-(\alpha_{j}^{H})^{2}}\right]}{F\left[\{F^{-1}(P_{j}) - \alpha_{j}^{H}W\}/\sqrt{1-(\alpha_{i}^{H})^{2}}\right]}.$$
$$G_{j}(W|S=Q) = (1-\bar{R}_{j}) \frac{F\left[\{F^{-1}(\bar{P}_{j}) - \alpha_{j}^{Q}Z\}/\sqrt{1-(\alpha_{j}^{Q})^{2}}\right]}{F\left[\{F^{-1}(P_{j}) - \alpha_{j}^{Q}Z\}/\sqrt{1-(\alpha_{j}^{Q})^{2}}\right]}.$$

 \bigcirc We set $\bar{R}_j = 0$ in the simplest case.

Conditional Expected Loss

○ Conditional default probability $P_j(W|S=H,Q)$ and conditional LGD, $G_j(W|S=H,Q)$, conditional expected loss,

 $\mathsf{E}(L_j|Z) = \omega G_j(W|\mathsf{S}=\mathsf{H})P_j(W|\mathsf{S}=\mathsf{H}) + (1-\omega)G_j(W|\mathsf{S}=\mathsf{Q})P_j(W|\mathsf{S}=\mathsf{Q}).$

Monte Carlo Simulation and MSE

☑ One-factor non-standardized Gaussian Copula

• $W \sim N(-0.03, 3.05), Z, \varepsilon_i \sim N(0, 1).$

- W and ε_i are generated 10000 observations.
- One-factor t Copula
 - $W \sim N(-0.03, 3.05), \varepsilon_i \sim N(0, 1).$
 - > Z follows t pdf with ν degrees of freedom.

• Conditional probability that date t was belonging to the hectic is $\pi(W = w)$.

 $P(S = H|W = w) = \pi(W = w)$ $= \frac{\omega c(z_j, w|\theta^H)}{(1 - \omega)c(z_j, w|\theta^Q) + \omega c(z_j, w|\theta^H)}$

\odot where *c* is copula density.

Project to Default Time

□ Using the definition of survival rate (Hull, 2006)

$$\tau_i |\mathsf{S}| = -\frac{\log\{1 - F(Z_j |\mathsf{S})\}}{P_j}.$$

 \square P_j is the hazard rate and marginal probability that obligor j will default.

 \Box $\tau_j | S$ is corresponding to

 $\mathsf{E}[\mathsf{I}(\tau_j|\mathsf{S}<1)]=\mathsf{P}(\tau_j|\mathsf{S}<1)=\mathsf{P}_j(Z|\mathsf{S}).$

State-Dependent Recovery Rate Simulation

- $\boxdot (1-R_j)P_j = (1-\bar{R}_j)\bar{P}_j.$
- \overline{P}_j is a adjusted default probability calibrated by plugging hazard rate P_j .
- \$\bar{R_j}\$ is a lower bound for state-dependent recovery rates [0,1].
 We set \$\bar{R_i}\$ = 0 in the simplest case.
- \Box Given α_i^S and simulated Z, we generate $G_j(Z|S)$.

Expected Loss Function

With these two specifications, we study the expected loss function under the given scenarios

$$E(L_j|W) = \pi(W = w)G_j(W|S=H)P_j(W|S=H) + \{1 - \pi(W = w)\}G_j(W|S=Q)P_j(W|S=Q)$$

 $\Box \pi(W = w)$ is better than unconditional probability ω .

Estimation of the AE

☑ Absolute Error (AE)

AE = (actual portfolio loss - expected portfolio loss).

- □ Actual portfolio loss is from Moody's report.
- Exposure of each obligor is 100 million.
- □ Compare minimum AE, MAE to evaluate candidate models.

Data

- ☑ Forecast Period: 31 in 2008
- □ Daily USD S&P 500 and stock return of the defaults
- ⊡ Estimated period: 3 years before the default year
- Source: Datastream

4-1

Data

- Recovery rate: Realized recovery rate R_j (weighted by volume) before default year by Moody's
- Hazard rate: Average historical default probability from Moody's report

Financial return data

 Considering the S&P 500 and 45 stock returns are following the AR(1)-GARCH(1,1) model

$$r_{jt} = \mu_j + \rho_j r_{j,t-1} + \sigma_{jt} \epsilon_{jt}$$
$$\sigma_{jt} = \omega_j + \alpha_j r_{j,t-1}^2 + \beta_j \sigma_{j,t-1}^2$$

• where r_{jt} is stock return and $j = 1, \dots, d, t = 1, \dots, T$, ϵ_{jt} are i.i.d vectors with distribution,

 $F(z_1,\cdots,z_d)=C(F_v(z_1),\cdots,F_v(z_d))$

 \Box F_v denotes the cdf of t distribution with v degrees of freedom, used to model innovations in GARCH model

Conditional Factor Loading-Gaussian Copula

Company	Uncond.	Quiet	Hectic
Abitibi-Consolidated Com. of Can.	0.21	-0.26	0.31
Franklin Bank	0.39	0.66	-0.18
Glitnir Banki	0.24	-0.99	0.13
GMAC	0.24	0.16	0.98
Lehman Bros	-0.09	-0.33	0.56

Table 1: Correlation coefficients between S&P500 index returns and the return of default companies in 2008 are computed by Gaussian copula.

Conditional Factor Loading-t copula

Company	Uncond.	Quiet	Hectic
Abitibi-Consolidated Com. of Can.	-0.26	-0.50	0.22
Franklin Bank	0.39	0.66	-0.16
Glitnir Banki	0.13	-0.73	0.24
Kaupth. Bank	0.16	-0.25	0.31
Lehman Bros	-0.06	-0.17	0.85

Table 2: Correlation coefficients between S&P500 index returns and the return of default companies in 2008 are computed by t copula.

(a)Glitnir Banki

(b) Washington Mutual Bank

4 - 6

Figure 4: The relationship between state-dependent recovery rates and S&P 500, Z by using t copula

'*' in blue illustrates the pattern of state-dependent recovery rate, and '+' in red plots the recoveries proposed by Amraoui et al.(2012)

Estimation of MAE-Gaussian Copula

	FC	RFL	RR	RRFL
2008				
APL	2035.02	2035.02	2035.02	2035.02
EPL	1158.61	1186.51	1550.05	1598.29
AE	878.89	575.36	484.97	436.73
MAE	27.47	17.98	15.16	13.65
EPL/APL	53.71%	58.30%	78.93%	77.60%

Table 3: The mean of actual portfolio loss (APL), expected portfolio loss (EPL) and AE, MAE (in million)

Estimation of MAE-t Copula

	TFC	TRFL	TRR	TRRFL
2008				
APL	2035.02	2035.02	2035.02	2035.02
EPL	1138.53	1483.23	1695.85	1921.80
AE	896.49	551.79	339.17	113.22
MAE	28.02	17.24	10.60	3.54
EPL/APL	55.95%	72.89%	83.33%	94.44%

Table 4: The actual portfolio loss (APL), expected portfolio loss (EPL), AE, and MAE (in million) for robustness

Conclusions

- (i) Model the dependence in a more flexible and realistic way.
 - Build the quiet and hectic regimes.
 - Connect the recovery rate to the common factor.
 - State-dependent describes the asymmetric thick tail.
- (ii) The conditional factor copulae together with state-dependent recoveries model could predict the default event during the crisis period.

t-Copula Based Factor Model for Credit Risk Analysis

Meng-Jou Lu Cathy Yi-Hsuan Chen

Ladislaus von Bortkiewicz Chair of Statistics Humboldt–Universität zu Berlin C.A.S.E. – Center for Applied Statistics and Economics National Chiao Tung University Department of Finance Chung Hua University Ivb.wiwi.hu-berlin.de case.hu-berlin.de nctu.edu.tw

References

Amraoui, S. and Cousot, L. and Hitier, S. and Laurent, J. *Pricing CDOs with state-dependent stochastic recovery rate* Quantitative Finance 12(8): 1219-1240, 2012

Andersen, L. and J. Sidenius
 Extensions to the Gaussian: Random recovery and random factor loadings
 Journal of Credit Risk 1(1): 29-70, 2004

Ang, A. and Bekaert, G. International asset allocation with regime shifts Review of Financial Studies 15(4):1137-1187, 2002

References

```
Hull, J. and White, A.
Valuation of a CDO and an nth-to-default CDS without Monte
Carlo simulation
Journal of Derivatives 12(2):8-23, 2004
Krupskii, P. and Harry, J.
Factor copula model for multivariate data
Journal of Multivariate Analysis 120: 85-101, 2013
McNeil, A.J., Frey, R. and Embrechts, P.
Quantitative Risk Management: Concepts, techniques and
tools
Princeton university press, 2015
```